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Figure 1. Teaser – We train a controllable neural radiance field from multiple views of a dynamic 3D scene, under varying poses and
attributes; in this example eye being open/closed and mouth smiling/frowning. Given only six annotations (a), our method provides full
control over the scene appearance, allowing us to synthesize (b) novel views and (c) novel attributes, including attribute combinations that
were never seen in the training data (green box).

Abstract

We extend neural 3D representations to allow for intu-
itive and interpretable user control beyond novel view ren-
dering (i.e. camera control). We allow the user to annotate
which part of the scene one wishes to control with just a
small number of mask annotations in the training images.
Our key idea is to treat the attributes as latent variables
that are regressed by the neural network given the scene en-
coding. This leads to a few-shot learning framework, where
attributes are discovered automatically by the framework,
when annotations are not provided. We apply our method to
various scenes with different types of controllable attributes
(e.g. expression control on human faces, or state control in
movement of inanimate objects). Overall, we demonstrate,
to the best of our knowledge, for the first time novel view and
novel attribute re-rendering of scenes from a single video.

1. Introduction
Neural radiance field (NeRF) [30] methods have recently

gained popularity thanks to their ability to render photore-
alistic novel-view images [28, 35, 36, 49]. In order to widen
the scope to other possible applications, such as digital me-
dia production, a natural question is whether these meth-

ods could be extended to enable direct and intuitive con-
trol by a digital artist, or even a casual user. However, cur-
rent techniques only allow coarse-grain controls over ma-
terials [52], color [18], or object placement [47], or only
support changes that they are designed to deal with, such as
shape deformations on a learned shape space of chairs [25],
or are limited to facial expressions encoded by an explicit
face model [12]. By contrast, we are interested in fine-
grained control without limiting ourselves to a specific class
of objects or their properties. For example, given a self-
portrait video, we would like to be able to control individ-
ual attributes (e.g. whether the mouth is open or closed);
see Figure 1. We would like to achieve this objective with
minimal user intervention, without the need of specialized
capture setups [24].

However, it is unclear how fine-grained control can be
achieved, as current state-of-the-art models [36] encode the
structure of the 3D scene in a single and not interpretable la-
tent code. For the example of face manipulation, one could
attempt to resolve this problem by providing dense supervi-
sion by matching images to the corresponding Facial Action
Coding System (FACS) [11] action units. Unfortunately,
this would require either an automatic annotation process or
careful and extensive per-frame human annotations, mak-
ing the process expensive, generally unwieldy, and, most
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importantly, domain-specific. Automated tools for domain-
agnostic latent disentanglement are a very active topic of
research in machine learning [9, 16, 17], but no effective
plug-and-play solution exists yet.

Conversely, we borrow ideas from 3D morphable mod-
els (3DMM) [7], and in particular to recent extensions that
achieve local control by spatial disentanglement of con-
trol attributes [32, 45]. Rather than having a single global
code controlling the expression of the entire face, we would
like to have a set of local “attributes”, each controlling
the corresponding localized appearance; more specifically,
we assume spatial quasi-conditional independence of at-
tributes [45]. For our example in Figure 1, we seek an
attribute capable to control the appearance of the mouth,
another to control the appearance of the eye, etc.

Thus, we introduce a learning framework denoted CoN-
eRF (i.e. Controllable NeRF) that is capable of achieving
this objective with just few-shot supervision. As illustrated
in Figure 1, given a single one-minute video, and with as
little as two annotations per attribute, CoNeRF allows fine-
grained, direct, and interpretable control over attributes.
Our core idea is to provide, on top of the ground truth
attribute tuple, sparse 2D mask annotations that specify
which region of the image an attribute controls. Further, by
treating attributes as latent variables within the framework,
the mask annotations can be automatically propagated to
the whole input video. Thanks to the quasi-conditional in-
dependence of attributes, our technique allows us to syn-
thesize expressions that were never seen at training time;
e.g. the input video never contained a frame where both eye
were closed and the actor had a smiling expression; see Fig-
ure 1 (green box).

Contributions. To summarize, our CoNeRF method1:

• provides direct, intuitive, and fine-grained control over
3D neural representations encoded as NeRF;

• achieves this via few-shot supervision, e.g., just a handful
of annotations in the form of attribute values and corre-
sponding 2D mask are needed for a one minute video;

• while inspired by domain-specific facial animation re-
search [45], it provides a domain-agnostic technique.

2. Related works
Neural Radiance Fields [30] provide high-quality render-

ings of scenes from novel views with just a few exemplar
images captured by a handheld device. Various extensions
have been suggested to date. These include ones that focus
on improving the quality of results [28,35,36,49], ones that
allow a single model to be used for multiple scenes [39,43],
and some considering controllability of the rendering output
at a coarse level [14, 25, 46–48, 52], as we detail next.

1Code and dataset will be released if the paper is accepted.

In more detail, existing works enable only compositional
control of object location [47, 48], and recent extensions
also allow for finer-grain reproduction of global illumina-
tion effects [14]. NeRFactor [52] shows one can model
albedos and BRDFs, and shadows, which can be used to,
e.g., edit material, but the manipulation they support is lim-
ited to what is modeled through the rendering equation. Co-
deNeRF [18] and EditNeRF [25] showed that one can edit
NeRF models by modifying the shape and appearance en-
coding, but they require a curated dataset of objects viewed
under different views and colors. HyperNeRF [36], on
the other hand can adapt to unseen changes specific to the
scene, but learns an arbitrary attribute (ambient) space that
cannot be supervised, and, as we show in Section 4, cannot
be easily related to specific local attribute within the scene
for controllability.

Explicit supervision. One can also condition NeRF repre-
sentations [12] with face attribute predicted by pre-trained
face tracking networks, such as Face2Face [41]. Similarly,
for human bodies, A-NeRF [40] and NARF [33] use the
SMPL [26] model to generate interpretable pose param-
eters, and Neural Actor [24] further includes normal and
texture maps more detailed rendering. While these mod-
els result in controllable NeRF, they are limited to domain-
specific control and the availability of a heavily engineered
control model.

Controllable neural implicits. Controllability of neural
3D implicit representations has also been addressed by the
research community. Many works have limited focus on
learning human neural implicit representations while en-
abling the control via SMPL parameters [26], or linear
blend skinning weights [4, 10, 15, 27, 29, 38, 53, 54]. Some
initial attempts at learned disentangled of shape and poses
have also been made in A-SDF [31], allowing behavior con-
trol of the output geometry (e.g. doors open vs. closed)
while maintaining the general shape. However, the ap-
proach is limited to controlling SE(3) articulation of ob-
jects, and requires dense 3D supervision.

2.1. Neural Radiance Field (NeRF)

For completeness, we briefly discuss NeRF before div-
ing into the details of our method. A Neural Radiance Field
captures a volumetric representation of a specific scene
within the weights of a neural network. As input, it receives
a sample position x and a view direction v and outputs the
density of the scene σ at position x as well as the color c at
position x as seen from view direction v. One then renders
image pixels C via volume rendering [19]. In more detail,
x is defined by observing rays r(t) as x = r(t), where t pa-
rameterizes at which point of the ray you are computing for.
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One then renders the color of each pixel C(r) by computing

C (r) =

∫ tf

tn

T (t)σ (r(t)) c (r(t),v) dt , (1)

where v is the viewing angle of the ray r, tn and tf are the
near and far planes of the rendering volume, and

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
, (2)

is the accumulated transmittance. Integration in (1) is typi-
cally done via numerical integration [30].

2.2. HyperNeRF

Note that in its original formulation (1) is only able to
model static scenes. Various recent works [35, 36, 42] have
been proposed to explicitly account for possible appearance
changes in a scene (for example, temporal changes in a
video). To achieve this, they introduce the notion of canon-
ical hyperspace – more formally given a 3D query point
x and the collection θ of all parameters that describe the
model, they define:

K(x) ≡ K(x | β,θ), Canonicalizer (3)
β(x) ≡ H(x | β,θ), Hyper Map (4)

c(x), σ(x) = R(K(x),β(x) | θ). Hyper NeRF (5)

where the location is canonicalized via a canonicalizer K,
and the appearances, represented by β, are mapped to a hy-
perspace via H, which are then utilized by another neural
network R to retrieve the color c and the density σ at the
query location. Note throughout this paper we denote β to
indicates a latent code, while β(x) to indicate the corre-
sponding field generated by the hypermap lifting. With this
latent lifting, these methods render the scene via Eq. (1).
Note that the original NeRF model can be thought of the
case where K andH are identity mappings.

3. Controllable NeRF (CoNeRF)
Given a collection of C color images {Cc} ∈

[0, 1]W×H×3, we train our controllable neural radiance field
model by an auto-decoding optimization [34] whose losses
can be grouped into two main subsets:

arg min
θ=θ,{βc}

Lrep(θ | {Cc})︸ ︷︷ ︸
Section 3.1

+Lctrl(θ | {Mgt
c,a}, {αgt

c,a})︸ ︷︷ ︸
Section 3.2

. (6)

The first group consists of the classical HyperNeRF [36]
auto-decoder losses, attempting to optimize neural network
parameters θ jointly with latent codes {βc} to reproduce
the corresponding input images {Cc}:

Lrep(·) = Lrecon(θ, {βc} | {Cc}) + Lenc({βc}). (7)

The latter allow us to inject explicit control into the repre-
sentation, and are our core contribution:

Lctrl(·) = Lmask(θ, {βc} | {Mgt
c,a}) g.t. masks (8)

+ Lattr(θ, {βc} | {αgt
c,a}). g.t. attributes (9)

As mentioned earlier in Section 1, we aim for a neural 3D
appearance model that is controlled by a collection of at-
tributes α={αa}, and we expect each image to be a mani-
festation of a different value of attributes, that is, each image
Cc, and hence each latent code βc, will have a correspond-
ing attribute αc. The learnable connection between latent
codes β and the attributes α, which we represent via re-
gressors, is detailed in Section 3.3.

3.1. Reconstruction losses

The primary loss guiding the training of the NeRF model
is the reconstruction loss, which simply aims to reconstruct
observations {Cc}. As in other neural radiance field mod-
els [28, 30, 35, 36] we simply minimize the L2 photometric
reconstruction error with respect to ground truth images:

Lrecon(·) =
∑
c

Er∼Cc

[∥∥C(r | βc,θ)−Cgt(r)
∥∥2
2

]
.

(10)
As is typical in auto-decoders, and following [34], we im-
pose a zero-mean Gaussian prior on the latent codes {βc}:

Lenc(·) =
∑
c

‖βc‖22 . (11)

3.2. Control losses

The user defines a discrete set of A number of attributes
that they seek to control, that are sparsely supervised across
frames—we only supervise attributes when we have an an-
notation, and let others be discovered on their own through-
out the training process, as guided by (7). More specifically,
for a particular image Cc, and a particular attribute αa, the
user specifies the quantities:

• αc,a ∈ [−1, 1]: specifying the value for the a-th at-
tribute in the c-th image; see the sliders in Figure 1;

• Mc,a ∈ [0, 1]W×H : roughly specifying the image re-
gion that is controlled by the a-th attribute in the c-th
image; see the masks in Figure 1.

To formalize sparse supervision, we employ an indicator
function δc,a, where δc,a = 1 if an annotation for attribute a
for image c is provided, otherwise δc,a = 0. We then write
the loss for attribute supervision as:

Lattr(·) =
∑
c

∑
a

δc,a|αc,a − αgt
c,a|2. (12)
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x

β

K

H

K(x)

β(x)

Haα α(x)

M
�m(x)

�m0(x)

R

A

c(x)

σ(x)

(b) Controllable neural radiance field (our method)

Figure 2. Framework – We depict in (a) the HyperNeRF [36] formulation, and (b) our Controllable-NeRF (CoNeRF). In (a), both point
coordinates x and latent representation β are respectively processed by a canonicalizer K and a hyper map H, which are then turned into
radiance and density field values byR. In (b), we introduce regressorsA andM that regress the attribute and the corresponding mask that
enable few-shot attribute-based control of the NeRF model. See Section 3.3 for details.

For the mask few-shot supervision, we employ the vol-
ume rendering in (20) to project the 3D volumetric neural
mask field ma(x) into image space, and then supervise it
as:

Lmask(·) =
∑
c,a

δc,a Er

[
CE
(
M(r | βc,θ),Mgt

c,a(r)
)]
,

(13)
where CE (·, ·) denotes cross entropy, and the field σ(x) in
(20) is learned by minimizing (10). Importantly, as we do
not wish for (13) to interfere with the training of the un-
derlying 3D representation learned through (10), we stop
gradients in (13) w.r.t. σ(x). Furthermore, in practice, be-
cause the attribute mask vs. background distribution can be
highly imbalanced depending on which attribute the user is
trying to control (e.g. an eye only covers a very small por-
tion of an image), we employ a focal loss [23] in place of
the standard cross entropy loss.

3.3. Controlling and rendering images

In what follows, we drop the image subscript c to sim-
plify notation without any loss of generality. Given a latent
code β representing the 3D scene behind an image, we de-
rive a mapping to our attributes via a neural map A with
learnable parameters θ:

{αa} = A(β | θ), A : RB → [0, 1]A, (14)

where these correspond to the sliders in Figure 1. In the
same spirit of (4), to allow for complex topological changes
that may not be represented by the change in a single scalar
value alone, we lift the attributes to a hyperspace. In ad-
dition, since each attribute governs different aspects of the
scene, we employ per-attribute learnable hypermaps {Ha},
which we write:

αa(x) = Ha(x, αa | θ) Ha : R3 × R→ Rd. (15)

Note that while αa is a scalar value, αa(x) is a field that
can be queried at any point x in space. These fields are
concatenated to form α(x) = {αa(x)}.

We then provide all this information to generate an at-
tribute masking field via a network M(· | θ). This field

determines which attribute attends to which position in
space x:

m0(x)⊕m(x) =M(K(x),β(x),α(x) | θ), (16)

M : R3 × RB × RA×d → RA+1
+ , (17)

where ⊕ is a concatenation operator, m(x)={ma(x)}, and
the additional mask m0(x) denotes space that is not af-
fected by any attribute. Note that because the mask location
should be affected by both the particular attribute of interest
(e.g., the selected eye status) and the global appearance of
the scene (e.g., head movement), M takes both β(x) and
α(x) as input in addition to K(x). In addition, because the
mask is modeling the attention related to attributes, collec-
tively, these masks satisfy the partition of unity property:

m0(x) + Σa[ma(x)] = 1 ∀x ∈ R3. (18)

Finally, in a similar spirit to (5), all of this information is
processed by a neural network that produces the desired ra-
diance and density fields used in volume rendering:

c(x)

σ(x)

}
=R(K(x),m(x)�α(x)︸ ︷︷ ︸

attribute controls

,m0(x) · β(x)︸ ︷︷ ︸
everything else

| θ).

(19)
In particular, note that m(x)=0 implies m0(x)=1, hence
our solution has the capability of reverting to classical Hy-
perNeRF (5), where all change in the scene is globally en-
coded in β(x). Finally, these fields can be used to render
the mask in image space, following a process analogous to
volume rendering of radiance:

M(r|θ)=

∫ tf

tn

T (t)·σ(r(t))·[m0(r(t))⊕m(r(t))] dt. (20)

We depict our inference flow in Figure 2 (b).

3.4. Implementation details

We implement our method for NeRF based on the JAX
[8] implementation of HyperNeRF [36]. We use both the
scheduled windowed positional encoding and weight ini-
tialization of [35], as well as the coarse-to-fine training
strategy [36].
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Besides the newly added networks, we follow the same
architecture as HyperNeRF. For the attribute network A we
use a six-layer multi-layer perceptron (MLP) with 32 neu-
rons at each layer, with a skip connection at the fifth layer,
following [35, 36]. For the lifting network Ha, we use the
same architecture as H, except for the input and output di-
mension sizes. For the masking networkM we use a four-
layer MLP with 128 neurons at each layer, followed by an
additional 64 neuron layer with a skip connection. The net-
work R also shares the same architecture as HyperNeRF,
but with a different input dimension size to accommodate
for the changes our method introduces.

2D implementation. To show that our idea is not limited
to neural radiance fields, we also test a 2D version of our
framework that can be used to directly represent images,
without going through volume rendering. We use the same
architecture and training procedure as in the NeRF case,
with the exception that we do not predict the density σ, and
we also do not have the notion of depth—each ray is di-
rectly the pixel. We center crop each video and resize each
frame to be 128× 128.

Hyperparameters. We train all our NeRF models with
480×270 images and with 128 samples per ray. We train for
250k iterations with a batch size of 512 rays. During train-
ing, we also maintain that 10% of rays are sampled from
annotated images. We set Lattr = 10−1, Lmask = 10−2 and
Lenc = 10−4. For the number of hyper dimensions we set
d = 8. For the experiments with the 2D implementation, we
sample 64 random images from the scene and further sub-
sample 1024 pixels from each of them. For all experiments
we use Adam [20] with learning rate 10−4 exponentially
decaying to 10−5, as it reaches 250k iterations. We provide
additional architectural details in the supplementary mate-
rial. Training a single model takes around 12 hours on an
NVIDIA V100 GPU.

4. Results
4.1. Datasets and baselines

We evaluate our method on two datasets: real video se-
quences captured with a smartphone (real dataset) and syn-
thetically rendered sequences (synthetic dataset). Here we
introduce those datasets and the baselines for our approach.

Real dataset. Each of the seven real sequences is 1 minute
long and was captured either with a Google Pixel 3a or
an Apple iPhone 13 Pro. Four of them consists of peo-
ple performing different facial expressions including smil-
ing, frowning, closing or opening eyes, and opening mouth.
For the other three, we captured a toy car changing its
shape (a.k.a. Transformer), a single metronome, and two
metronomes beating with different rates. For one of the four
videos depicting people, to use it for the 2D implementation

case, we captured it with a static camera that shows a frontal
view of the person. All other sequences feature camera mo-
tions showing front and sides of the object in the center of
the scene. For videos with human subjects, the subjects
signed a participant consent form, which was approved by
a research ethics board. We informed the participants that
their data will be altered with our method.

We extract frames at 15 FPS which gives approximately
900 frames per capture. Because novel attribute synthe-
sis via user control on real scenes does not have a ground
truth view—we aim to create scenes with unseen attribute
combinations—the benefit of our method is best seen qual-
itatively. Nonetheless, to quantitatively evaluate the render-
ing quality, we interpolate between two frames and evaluate
its quality. In more detail, to minimize the chance of the dy-
namic nature of the scene interfering with this assessment,
we use every other frame as a test frame for the interpolation
task.

For all human videos, we define three attributes—one for
the status of each of the two eyes, and one for the mouth.
We annotate only six frames per video in this case, specifi-
cally the frames that contain the extremes of each attribute
(e.g., left eye fully open). For the toy car, we set the shape
of the toy car to be an attribute, and annotate two extremes
from two different view points—when the toy is in robot-
mode and when it is in car-mode from its left and right side.
For the metronomes, we consider the state of the pendulum
to be the attribute and annotate the two frames with the two
extremes for the single metronome case, and seven frames
for the two metronome case as the pendulums of the two
metronomes are often close to each other and required spe-
cial annotations for these close-up cases; see Figure 3.

Synthetic dataset. Since the lack of ground-truth data ren-
ders measuring the quality of novel attribute synthesis infea-
sible in practice, we leverage Kubric software [13] to gen-
erate synthetic dataset, where we know exactly the state of
each object in the scene. We create a simple scene where
three 3D objects, the teapot [3], the Stanford bunny [1],
and Suzanne [2], are placed within the scene and are ren-
dered with varying surface colors, which are our attributes;
see Figure 5. We generate 900 frames for training and 900
frames for testing. To ensure that the attribute combina-
tion during training is not seen in the test scene, we set
the attributes to be synchronized for the training split, and
desynchronized for the test split. We further render the test
split from different camera positions than the training split
to account for novel views. We randomly sample 5% of the
frames with a given attribute for each object to be set as the
ground-truth attribute. During validation, we use attribute
values directly to predict the image.

Baselines. To evaluate the reconstruction quality of our
method, CoNeRF, we compare it with four different base-
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Figure 3. Novel view and novel attribute synthesis on real data – We synthesize scenes from a novel view and with a novel attribute
combination, not seen during training. A naive extension of HyperNeRF, HyperNeRF+π fails to disentangle attributes and results in
a modification of the scene irrespectively of attribute meaning e.g., opening mouth results in closing eyes at the same time. Ours-M
improves the results, but does not disentangles the attribute space, as successfully done by our complete method. The differences between
these methods can even lead to complete failure cases, as shown in the metronome and the toy car case.

lines: 1© standard NeRF [30]; 2© NeRF+Latent, a sim-
ple extension to NeRF where we concatenate each coordi-
nate x with a learnable latent code β to support appear-
ance changes of the scene; 3© Nerfies [35]; and 4© Hyper-
NeRF2 [36]. Additionally, as existing methods do not sup-
port attribute-based control with a few-shot supervision, we
create another baseline 5© by extending HyperNeRF with a
simple linear regressor π that regresses βc given αc. We
call this baseline HyperNeRF+π. To further show the im-
portance of masking, we also compare our approach against
a stripped-down version of our method, Ours-M, where we
disable the part of our pipeline responsible for masking. All
baselines that utilize annotations were trained with the same
sparse labels as our method.

4.2. Comparison with the baselines

Qualitative highlights. We first show qualitative examples
of novel attribute and view synthesis on the real dataset in
Figure 3. Our method allows for controlling the selected
attribute without changing other aspects of the image—
our control is disentangled. This disentanglement allows
our method to generate images with attribute combinations
that were not seen at training time. On the contrary, as
there is no incentive for the learned embeddings of Hy-
perNeRF to be disentangled, the simple regression strategy
of HyperNeRF+π results in entangled control, where when
one tries to close/open the mouth it ends up affecting the
eyes. The same phenomenon happens also for Ours-M.
Moreover, due to the complexity of motions in the scene,

2We use the version with dynamic plane slicing as it consistently out-
performs the axis-aligned strategy; see [36] for more details.

(a) annotation (b) unannotated views

Figure 4. Annotation example – We provide only a rough annota-
tion for each attribute, which is enough for the method to discover
the mask for each attribute across all views automatically. Bottom
row shows masks overlaid on the image.

HyperNeRF+π fails completely to render novel views of
the toy car, whereas our method, with only four anno-
tated frames, successfully provides both controllability and
high-quality renderings. Please also see Supplementary
Material for more qualitative results, including a video
demonstration.

Note that in all of these sequences, we provide highly
sparse annotations and yet our method learns how each at-
tribute should influence the appearance of the scene. In Fig-
ure 4, we show an example annotation and how the method
finds the mask for unannotated views.

Quantitative results on synthetic dataset. To complete
the qualitative evaluation of our method, we provide re-
sults using synthetic dataset with available ground truth. We
measure Peak Signal-to-Noise Ratio (PSNR), Multi-scale
Structural Similarity (MS-SSIM) [44], and Learned Percep-
tual Image Patch Similarity (LPIPS) [50] and report them
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Method PSNR↑ MS-SSIM↑ LPIPS↓
HyperNeRF+π 25.963 0.854 0.158
Ours-M 27.868 0.898 0.155
Ours 32.394 0.972 0.139

Table 1. Novel view and novel attributes results – We report
average PSNR, MS-SSIM, and LPIPS values for novel view and
novel attribute synthesis on synthetic data. Our method gives the
best results.

C
a
m

1
C
a
m

2

Ours Ours-M HyperNeRF+π

Figure 5. Novel view and novel attribute synthesis on synthetic
data – We show examples of novel view and novel attribute syn-
thesis on synthetic data. The scene is composed of three objects,
where the color of each object is their attribute. Our method pro-
vides control over the color of each object independently, whereas
both HyperNeRF+π and Ours-M fail to deliver controllability and
results in all three objects having the same attribute in the rendered
scene.

in Table 1. With only 5% of the annotations, our method
provides the best novel-view and novel-attribute synthesis
results, as reconfirmed by the qualitative examples in Fig-
ure 5. As shown, neither HyperNeRF+π nor Ours-M is
able to provide good results in this case, as without dis-
entangled control of each attribute, the novel attribute and
view settings of each test frame cannot be synthesized prop-
erly.

Interpolation task. To further verify that our rendering
quality does not degrade with the introduction of controlla-
bility, we evaluate our method on a frame interpolation task
without any attribute control. Unsurprisingly, as shown in
Table 2, all methods that support dynamic scenes work sim-
ilarly, including ours for interpolation. Note that for the in-
terpolation task, we interpolate every other frame, in order
to minimize the chance of attributes affecting the evalua-
tion. Here, we are purely interested in the rendering quality
from a novel view.

4.3. Direct 2D rendering

To verify how our approach generalizes beyond NeRF
models and volume rendering, we apply our method to
videos taken from a single view point, creating a 2D ren-
dering task. We show in Figure 6 a proof-of-concept for

Method PSNR ↑ MS-SSIM ↑ LPIPS ↓
NeRF 28.795 0.951 0.210
NeRF + Latent [30] 32.653 0.981 0.182
NeRFies [35] 32.274 0.981 0.180
HyperNeRF [36] 32.520 0.981 0.169

Ours-M 32.061 0.979 0.167
Ours 32.342 0.981 0.168

Table 2. Quantitative results (interpolation) – We report results
in terms of PSNR, MS-SSIM, and LPIPS for the interpolation task.
These results are obtained for interpolated view synthesis only,
not for novel attribute rendering. Our method provides similar
performance in terms of rendering quality, but with controllability.

attribute values 1-1
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Figure 6. 2D image generation example – Our framework also
generalizes to direct generation of 2D images. Here we show novel
attribute synthesis for a webcam video of a person making expres-
sions. Each individual part of the scene is correctly controlled
according to the attribute values.

Real (interpolation) Synthetic (novel view & attr.)

Model PSNR ↑ MS-SSIM ↑ LPIPS ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Base (Lrecon) 32.457 0.981 0.168 24.407 0.718 0.173
+Lenc 32.478 0.982 0.167 27.018 0.871 0.164
+Lenc + Lattr 32.254 0.981 0.167 27.322 0.873 0.147
+Lenc + Lattr + Lmask 32.342 0.981 0.168 32.394 0.972 0.139

Table 3. Effect of loss functions – We report the rendering qual-
ity of our method as we procedurally introduce the loss terms.
For controlled rendering with novel views and attributes (synthetic
data), each loss term adds to the rendering quality, with the Lmask

being critical. For the novel view rendering on real data, addition
of loss functions for controllability do not have a significant effect
on the rendering quality—they do no harm.

employing our approach outside of NeRF applications to
allow controllable neural generative models.

4.4. Ablation study

Loss functions. In Table 3, we show how each loss term
affects the network’s performance, contributing to perfor-
mance improvements. When rendering novel views with

7



reconstruction maskannotation maskreconstruction

frowning smiling

Figure 7. Effect of annotation quality – Our method is moder-
ately robust to the quality of annotations. We visualize the results
for two expressions: frowning and smiling, while keeping both
eyes in a neutral position. Even with wildly varying annotations
as shown, the reconstructions are reasonably controlled, with the
exception of the top row, where we show a case where the annota-
tions is too restrictive, resulting in the annotation being ignored for
one eye. We show in bottom row also an interesting case, where
the mask is large enough to start capturing the correlation among
mouth expressions and the eye.

novel attributes, the full formulation is a must, as without
all loss terms the performance drops significantly—for ex-
ample, results without Lmask is similar to Ours-M results in
Table 1 and Figure 5. In the case of the interpolation task,
the additional loss functions for controllability have no sig-
nificant effect on the rendering quality. In other words, our
controllability losses do not interfere with the rendering
quality, other than imbuing the framework with controlla-
bility.

Quality of few shot supervision. We test how sensitive our
method is against the quality of annotation supervision. In
Figure 7 we demonstrate how each annotation leads to the
final rendering quality. Our framework is robust to a mod-
erate degree to the inaccuracies in the annotations. How-
ever, when they are too restrictive, the mask may collapse,
as shown on the top row. Too large of a mask could also
lead to moderate entanglement of attributes, as shown in
the bottom row. Still, in all cases, our method provides a
reasonable control over what is annotated.

Unannotated attributes. A natural question to ask is then
what happens with the unannotated changes that may exist
in the scene. In Figure 8 we show how the method per-
forms when annotating only parts of the appearance change
within the scene. The unannotated changes of the scene get
encoded as β, as in the case of HyperNeRF [36].

5. Conclusions

We have introduced CoNeRF, an intuitive controllable
NeRF model that can be trained with few-shot annotations

(a) annotated samples

(−,−) (0, 0) (+,+)

β
1

β
2

(b) renderings

Figure 8. Example with unannotated attributes – We show an
example of how our method performs when a part of the image
changes appearance, but is not annotated. With the annotations
in (a), we synthesize the scene with novel view and attributes in
(b), where the two rows are with different β configurations. We
denote the attribute configuration on the top of each column in (b).
As shown, the change that is not annotated is simply encoded in
the per-image encoding β.

in the form of attribute masks. The core contribution of our
method is that we represent attributes as localized masks,
which are then treated as latent variables within the frame-
work. To do so we regress the attribute and their corre-
sponding masks with neural networks. This leads to a few-
shot learning setup, where the network learns to regress
provided annotations, and if they are not provided for a
given image, proper attributes and masked are discovered
throughout training automatically. We have shown that
our method allows users to easily annotate what to control
and how, within a single video simply by annotating a few
frames, which then allows rendering of the scene from novel
views and with novel attributes, at high quality.

Limitations. While our method delivers controllability to
NeRF models, there is room for improvement. First, our
disentanglement of attribute strictly relies on the locality
assumption—if multiple attributes act on a single pixel, our
method is likely to have entangled outcomes when render-
ing with different attributes. An interesting direction would
therefore be to incorporate manifold disentanglement ap-
proaches [22, 51] to our method. Second, while very few,
we still require sparse annotations. Unsupervised discov-
ery of controllable attributes, for example as in [21], in a
scene remains yet to be explored. Lastly, we resort to user
intuition on which frames should be annotated—we heuris-
tically choose frames with extreme attributes (e.g., mouth
fully open). While this is a valid strategy, an interesting di-
rection for future research would be to employ active learn-
ing techniques for this purpose [6, 37]

We further discuss potential societal impact of our work
in the Supplementary Material.
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CoNeRF: Controllable Neural Radiance Fields

Supplementary Material

A. Potential social impact
Our work is originally intended for creative and enter-

tainment purposes, for example to allow users to easily edit
their personal photos to have all the members of a group
photo to have their eyes open. However, as with all work
that enable editable models, our method has the potential to
be misused for malicious purposes such as deep fakes. We
strongly advise against such misuse. Recent work [5] has
shown that it is possible to detect deep fakes, hinting that it
should be possible to detect these deep learning-generated
images. One of our future research direction is also along
these lines, where we now aim to reliably detect images
generated by our method.

B. Architecture details
We present architecture of: canonicalizer K in Fig. 10,

attribute map A in Fig. 11, hypermap H in Fig. 12, per-
attribute hypermap in Fig. 13, mask prediction network in
Fig. 14 and the rendering network in Fig. 15. Each net-
work contains only fully connected layers. Hidden layers
use ReLU activation function. Colors of figures correspond
to colors of blocks in Fig. 2b.

C. Additional qualitative results
See attached video clip for more qualitative results.

D. Failure Cases
We identify two modes of failure cases in our approach

and present them in Fig. 9. In some cases with particular
mask annotations, our model can struggle with controlling
elements that occupy small space in the image. The problem
is especially visible for controlling pendulum movement or
opening and closing eyes. In the former, pendulum disap-
pears and reappears in different places. In the latter, the
control of eyes is periodic and there are two distant values
in [−1, 1] that produce opening eyes. While with careful an-
notations we noticed that the problem is mostly preventable,
this problem may occur in practice.

vanishing left pendulum

reopening both eyes

Figure 9. Failure cases – Our model may learn spurious interpo-
lations for controlled elements that occupy little space in the im-
age and with insufficient/careless annotations. For the metronome,
due to the fast motion of the pendulum and its specularity, without
careful annotation our method may simply learn its motion blur
or sometimes even completely ignore the pendulum. In the face
example, this may result in the eye blinking multiple times while
interpolating between the attribute values of−1 and 1. Both cases
are preventable with more careful annotations and by annotating
more frames.
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Figure 10. The canonicalization network takes positionally en-
coded raw coordinates x and learnable per-image latent code β
and outputs rotation r expressed as a quaternion and translation
t. We rigidly transform each point x with an affine transform us-
ing both output. We use windowed positional encoding [35] for
x with 8 components, linearly increasing contribution of compo-
nents throughout 80k steps. We initialize the last layer to small
values so the network can learn a base structure of the data.
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Figure 11. The attribute map A takes a per-image learnable latent
code β and outputs A attributes α.
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Figure 12. The network predicting lifted latent code β, takes per-
image β as an input, positionally encoded raw points β and out-
puts a lifted code of size d. We use only one sine component to
encode x.
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Figure 13. Per-attributes hypermaps take an attribute together with
encoded x coordinates and output lifted αa(x) ambient code of
size d. We encode x with only single component.
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Figure 14. Masking networkM take lifted attributes α(x), lifted
latent code β(x) and canonicalized points K(x). We transform
α(x) and β(x) through a windowed positional encoding where
we start at 1k-th step linearly increasing a single sine component
for the next 10k steps. Points K(x) are encoded with 8 compo-
nents. The output is activated with a sigmoid function. We realize
m0(x) as m(x)0 = 1 −

∑
a∈A ma(x), and clip the output to

ensure the values range to be in [0, 1]. Note that while the network
shares similarities with the radiance field prediction part R, it is
not conditioned on view directions and appearance codes.
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Figure 15. The radiance field prediction network predicts RGB
colors c(x) and density values σ(x) from canonicalized points.
We encode points x with 8 sine components and linearly increase
contribution of a single component in α(x) and β(x) from 1k to
11k step. Per-point predicted predicted attributes α(x) and lifted
latent code β(x) are masked by a mask predicted from the mask-
ing network depicted in Fig. 14. The final linear layer takes addi-
tional per-image learnable appearance code ψ to account for any
visual variations that cannot be explained by the rest of the frame-
work (e.g. changes in lighting). The code can discarded during
evaluation. The same layer is additionally conditioned on the po-
sitionally encoded view directions. We activate the color output
with a sigmoid function.
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